login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145170
G.f. A(x) satisfies A(x/A(x)) = 1/(1-x)^6.
4
1, 6, 57, 866, 18444, 492924, 15424611, 542166480, 20861518935, 864061112296, 38081996557383, 1771322835258594, 86425203984341130, 4402953230795279532, 233372023965531945057, 12832558973488295874402, 730347857708249147767893
OFFSET
0,2
LINKS
FORMULA
Self-convolution 6th power of A145167.
Self-convolution cube of A145168.
Self-convolution square of A145169.
MAPLE
A[0]:= x -> 1+c*x:
for n from 1 to 20 do
cc:= coeff(series(A[n-1](x/A[n-1](x))-1/(1-x)^6, x, n+1), x, n);
A[n]:= unapply(eval(A[n-1](x), c=solve(cc, c))+c*x^(n+1), x);
od:
seq(coeff(A[20](x), x, j), j=0..20); # Robert Israel, Aug 19 2018
MATHEMATICA
nmax = 16; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x/A[x]] - 1/(1 - x)^6 + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq] [[1]], {n, 1, nmax}]; sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n), B); for(n=0, n, B=serreverse(x/A); A=1/(1-B)^6); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2008
STATUS
approved