login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213236 a(n) = (-n)^(n-1). 0
1, -2, 9, -64, 625, -7776, 117649, -2097152, 43046721, -1000000000, 25937424601, -743008370688, 23298085122481, -793714773254144, 29192926025390625, -1152921504606846976, 48661191875666868481, -2185911559738696531968, 104127350297911241532841 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..19.

Eric Weisstein's World of Mathematics, Lambert W-Function

Wikipedia, Lambert W function

FORMULA

E.g.f.: LambertW(x).

E.g.f. is the functional inverse of x * exp(x) which is the e.g.f. of A000027.

E.g.f. A(x) satisfies A(x) = x / exp(A(x)).

a(n) = -(-1)^n * A000169(n).

EXAMPLE

x - 2*x^2 + 9*x^3 - 64*x^4 + 625*x^5 - 7776*x^6 + 117649*x^7 + ...

MAPLE

a := proc(n); `if`( n<0, 0, n! * coeff( taylor( LambertW(x), x=0, n+1 ), x, n)); end;

MATHEMATICA

a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ ProductLog @ z, {z, 0, n}]]

Table[(-n)^(n-1), {n, 30}] (* Harvey P. Dale, Apr 29 2013 *)

PROG

(PARI) {a(n) = if( n<1, 0, (-n) ^ (n-1))}

(PARI) {a(n) = if( n<1, 0, n! * polcoeff( serreverse( x * exp(x + x * O(x^n))), n))}

(PARI) {a(n) = local(A); if( n<1, 0, A = O(x); for( k=1, n, A = x / exp(A)); n! * polcoeff( A, n))}

(MAGMA) [(-n)^(n-1) : n in [1..20]]; // Wesley Ivan Hurt, Jan 17 2017

CROSSREFS

Cf. A000027, A000169.

Sequence in context: A036777 A055860 A152917 * A000169 A112319 A232552

Adjacent sequences:  A213233 A213234 A213235 * A213237 A213238 A213239

KEYWORD

sign

AUTHOR

Michael Somos, Jun 07 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 22 06:17 EST 2018. Contains 299430 sequences. (Running on oeis4.)