OFFSET
2,2
COMMENTS
Given a Pythagorean triple (a,b,c), define S = c^4 - a^4 - b^4. Using Euclid's parameterization (a = 2*n*k, b = n^2 - k^2, c = n^2 + k^2), substituting to get S in terms of n and k gives S = 8*n^2*k^2*((n^2 - k^2))^2, which is a multiple of 288; T(n, k) = sqrt(S/288) = n*k*(n^2 - k^2)/6 = n*k*(n+k)*(n-k)/6.
LINKS
EXAMPLE
Triangle begins:
n/k 1 2 3 4 5 6 7
2 1;
3 4, 5;
4 10, 16, 14;
5 20, 35, 40, 30;
6 35, 64, 81, 80, 55;
7 56, 105, 140, 154, 140, 91;
8 84, 160, 220, 256, 260, 224, 140;
...
For n = 3, k = 2, a = 5, b = 12, c = 13. T(3, 2) = sqrt((13^4 - 5^4 - 12^4)/288) = 5.
CROSSREFS
KEYWORD
STATUS
approved