|
|
A131780
|
|
Row sums of triangle A131779.
|
|
3
|
|
|
1, 4, 5, 10, 15, 26, 41, 68, 109, 178, 287, 466, 753, 1220, 1973, 3194, 5167, 8362, 13529, 21892, 35421, 57314, 92735, 150050, 242785, 392836, 635621, 1028458, 1664079, 2692538, 4356617, 7049156, 11405773, 18454930, 29860703, 48315634, 78176337, 126491972
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n)/a(n-1) tends to phi; e.g., a(10)/a(9) = 178/109 = 1.633...
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-1)
|
|
FORMULA
|
From Andrew Howroyd, Sep 01 2018: (Start)
a(n) = 2*Fibonacci(n+1) - (1 - (-1)^n)/2.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n > 4.
G.f.: x*(1 + 3*x - x^2 - 2*x^3)/((1 - x)*(1 + x)*(1 - x - x^2)).
(End)
|
|
EXAMPLE
|
a(4) = 10 = sum of row 4 terms of triangle A131779: (3 + 1 + 5 + 1).
|
|
MATHEMATICA
|
LinearRecurrence[{1, 2, -1, -1}, {1, 4, 5, 10}, 40] (* or *) CoefficientList[ Series[(1+3*x-x^2-2*x^3)/(1-x-2*x^2+x^3+x^4), {x, 0, 40}], x] (* Harvey P. Dale, Aug 27 2021 *)
|
|
PROG
|
(PARI) a(n) = 2*fibonacci(n+1) - (1 - (-1)^n)/2; \\ Andrew Howroyd, Sep 01 2018
(PARI) Vec((1 + 3*x - x^2 - 2*x^3)/((1 - x)*(1 + x)*(1 - x - x^2)) + O(x^40)) \\ Andrew Howroyd, Sep 01 2018
|
|
CROSSREFS
|
Row sums of A131779.
Sequence in context: A119040 A287578 A135104 * A354968 A102006 A118735
Adjacent sequences: A131777 A131778 A131779 * A131781 A131782 A131783
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Gary W. Adamson, Jul 14 2007
|
|
EXTENSIONS
|
Terms a(11) and beyond from Andrew Howroyd, Sep 01 2018
|
|
STATUS
|
approved
|
|
|
|