login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354969
For prime partition (k_1, k_2, ..., k_i) of the number x, let the conjugate partition be (m_1, m_2, ... , m_j). If n = k_1 * k_2 * ... * k_i, then a(n) = m1 * m2 * ... * m_j.
1
1, 1, 4, 1, 4, 1, 9, 8, 4, 1, 9, 1, 4, 8, 16, 1, 18, 1, 9, 8, 4, 1, 16, 32, 4, 27, 9, 1, 18, 1, 25, 8, 4, 32, 32, 1, 4, 8, 16, 1, 18, 1, 9, 27, 4, 1, 25, 128, 72, 8, 9, 1, 48, 32, 16, 8, 4, 1, 32, 1, 4, 27, 36, 32, 18, 1, 9, 8, 72, 1, 50, 1, 4, 108, 9, 128, 18, 1, 25, 64, 4, 1, 32, 32, 4, 8, 16, 1, 48, 128, 9, 8, 4, 32, 36, 1, 288, 27, 128
OFFSET
2,3
LINKS
Eric Weisstein's World of Mathematics, Prime Partition
FORMULA
If p is prime, a(p^e) = e^p.
EXAMPLE
6 = 3*2.
x x x -> 3
x x -> 2
2*2*1=4. So a(6) = 4.
8 = 2*2*2.
x x -> 2
x x -> 2
x x -> 2
3*3=9. So a(8) = 9.
9 = 3*3.
x x x -> 3
x x x -> 3
2*2*2=8. So a(9) = 8.
10 = 5*2
x x x x x -> 5
x x -> 2
2*2*1*1*1=4. So a(10) = 4.
PROG
(Ruby)
require 'prime'
def A(ary)
y = ary.size
x = ary[0]
a = (0..y - 1).map{|i| [1] * ary[i] + [0] * (x - ary[i])}
(0..x - 1).map{|i| (0..y - 1).inject(0){|s, j| s + a[j][i]}}
end
def B(n)
n.prime_division.map{|i| [i[0]] * i[1]}.flatten
end
def C(n)
A(B(n).reverse).inject(:*)
end
def A354969(n)
(2..n).map{|i| C(i)}
end
p A354969(100)
CROSSREFS
Sequence in context: A322820 A097936 A277027 * A050338 A301598 A077088
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 14 2022
STATUS
approved