login
A097936
Total number of parts in all compositions of n into distinct odd parts.
1
1, 0, 1, 4, 1, 4, 1, 8, 19, 8, 19, 12, 37, 12, 55, 112, 73, 112, 91, 212, 127, 308, 145, 504, 781, 600, 817, 892, 1453, 1084, 2089, 1472, 3343, 1760, 4579, 6564, 6433, 6948, 8287, 11944, 11341, 16744, 14395, 26156, 18667, 35468, 22921, 53712, 64273, 67440
OFFSET
1,4
LINKS
FORMULA
Sum_{k>0} (k*k!*x^(k^2)/Product_{j=1..k} (1-x^(2*j))).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(n>(i+1)^2/4, [][], zip((x, y)->x+y, [b(n, i-2)],
`if`(i>n, [], [0, b(n-i, i-2)]), 0)[]))
end:
a:= proc(n) option remember; local l; l:=[b(n, n-1+irem(n, 2))];
add(i*l[i+1]*i!, i=1..nops(l)-1)
end:
seq (a(n), n=1..60); # Alois P. Heinz, Nov 20 2012
MATHEMATICA
Drop[ CoefficientList[ Series[Sum[k*k!*x^k^2/Product[1 - x^(2j), {j, 1, k}], {k, 1, 55}], {x, 0, 50}], x], 1] (* Robert G. Wilson v, Sep 08 2004 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Sep 05 2004
EXTENSIONS
More terms from Robert G. Wilson v, Sep 08 2004
STATUS
approved