OFFSET
1,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..5000
FORMULA
G.f.: Sum(k >= 0; k*k! x^((k^2+k)/2) / Prod(1<=j<=k; 1-x^j)).
a(n) = Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} k! * k * A008289(n,k). - Alois P. Heinz, Aug 10 2020
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(n>i*(i+1)/2, [][], zip((x, y)->x+y, [b(n, i-1)],
`if`(i>n, [], [0, b(n-i, i-1)]), 0)[]))
end:
a:= n-> (l-> add(i*l[i+1]*i!, i=1..nops(l)-1))([b(n$2)]):
seq(a(n), n=1..50); # Alois P. Heinz, Nov 20 2012
# second Maple program:
b:= proc(n, i, p) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, p!*p, b(n-i, min(n-i, i-1), p+1)+b(n, i-1, p)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 10 2020
MATHEMATICA
Drop[ CoefficientList[ Series[ Sum[ k*k!*x^((k^2 + k)/2)/Product[1 - x^j, {j, 1, k}], {k, 1, 45}], {x, 0, 40}], x], 1] (* Robert G. Wilson v, Sep 08 2004 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Sep 04 2004
EXTENSIONS
More terms from Robert G. Wilson v and John W. Layman, Sep 08 2004
STATUS
approved