login
A097910
Number of parts in all compositions of n into distinct parts.
8
1, 1, 5, 5, 9, 27, 31, 49, 71, 185, 207, 339, 457, 685, 1421, 1745, 2577, 3615, 5143, 6877, 13439, 15965, 23823, 31983, 45553, 59425, 83549, 139013, 173769, 244803, 330391, 452257, 597935, 810929, 1052559, 1692723, 2074321, 2890333, 3783821, 5178041, 6658377
OFFSET
1,3
LINKS
FORMULA
G.f.: Sum(k >= 0; k*k! x^((k^2+k)/2) / Prod(1<=j<=k; 1-x^j)).
a(n) = Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} k! * k * A008289(n,k). - Alois P. Heinz, Aug 10 2020
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(n>i*(i+1)/2, [][], zip((x, y)->x+y, [b(n, i-1)],
`if`(i>n, [], [0, b(n-i, i-1)]), 0)[]))
end:
a:= n-> (l-> add(i*l[i+1]*i!, i=1..nops(l)-1))([b(n$2)]):
seq(a(n), n=1..50); # Alois P. Heinz, Nov 20 2012
# second Maple program:
b:= proc(n, i, p) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, p!*p, b(n-i, min(n-i, i-1), p+1)+b(n, i-1, p)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 10 2020
MATHEMATICA
Drop[ CoefficientList[ Series[ Sum[ k*k!*x^((k^2 + k)/2)/Product[1 - x^j, {j, 1, k}], {k, 1, 45}], {x, 0, 40}], x], 1] (* Robert G. Wilson v, Sep 08 2004 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Sep 04 2004
EXTENSIONS
More terms from Robert G. Wilson v and John W. Layman, Sep 08 2004
STATUS
approved