login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336875
Number of parts, counted without multiplicity, in all compositions of n.
6
0, 1, 2, 6, 13, 30, 66, 144, 308, 655, 1380, 2891, 6024, 12500, 25844, 53274, 109530, 224690, 460033, 940276, 1918979, 3911186, 7962194, 16191875, 32896364, 66776727, 135445212, 274532607, 556086916, 1125727954, 2277650681, 4605981879, 9310120876, 18810538092
OFFSET
0,3
LINKS
EXAMPLE
a(4) = 1 + 2 + 2 + 2 + 1 + 2 + 2 + 1 = 13: (1)111, (1)1(2), (1)(2)1, (2)(1)1, (2)2, (1)(3), (3)(1), (4).
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0, [p!, 0],
`if`(i<1, 0, add((p-> [0, `if`(j=0, 0, p[1])]+p)(
b(n-i*j, i-1, p+j)/j!), j=0..n/i)))
end:
a:= n-> b(n$2, 0)[2]:
seq(a(n), n=0..38);
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n == 0, {p!, 0},
If[i<1, {0, 0}, Sum[{0, If[j == 0, 0, #[[1]]]}+#&[
b[n-i*j, i-1, p+j]/j!], {j, 0, n/i}]]];
a[n_] := b[n, n, 0][[2]];
a /@ Range[0, 38] (* Jean-François Alcover, Jun 13 2021, after Alois P. Heinz *)
CROSSREFS
Cf. A000070 (the same for partitions), A001792 (all parts), A097910, A336516.
Sequence in context: A115217 A094687 A369584 * A219753 A239305 A018013
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 06 2020
STATUS
approved