Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jun 13 2021 07:16:30
%S 0,1,2,6,13,30,66,144,308,655,1380,2891,6024,12500,25844,53274,109530,
%T 224690,460033,940276,1918979,3911186,7962194,16191875,32896364,
%U 66776727,135445212,274532607,556086916,1125727954,2277650681,4605981879,9310120876,18810538092
%N Number of parts, counted without multiplicity, in all compositions of n.
%H Alois P. Heinz, <a href="/A336875/b336875.txt">Table of n, a(n) for n = 0..1000</a>
%e a(4) = 1 + 2 + 2 + 2 + 1 + 2 + 2 + 1 = 13: (1)111, (1)1(2), (1)(2)1, (2)(1)1, (2)2, (1)(3), (3)(1), (4).
%p b:= proc(n, i, p) option remember; `if`(n=0, [p!, 0],
%p `if`(i<1, 0, add((p-> [0, `if`(j=0, 0, p[1])]+p)(
%p b(n-i*j, i-1, p+j)/j!), j=0..n/i)))
%p end:
%p a:= n-> b(n$2, 0)[2]:
%p seq(a(n), n=0..38);
%t b[n_, i_, p_] := b[n, i, p] = If[n == 0, {p!, 0},
%t If[i<1, {0, 0}, Sum[{0, If[j == 0, 0, #[[1]]]}+#&[
%t b[n-i*j, i-1, p+j]/j!], {j, 0, n/i}]]];
%t a[n_] := b[n, n, 0][[2]];
%t a /@ Range[0, 38] (* _Jean-François Alcover_, Jun 13 2021, after _Alois P. Heinz_ *)
%Y Cf. A000070 (the same for partitions), A001792 (all parts), A097910, A336516.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Aug 06 2020