|
|
A336873
|
|
a(n) = Sum_{k=0..n} (binomial(n+k,k) * binomial(n,k))^n.
|
|
2
|
|
|
1, 3, 73, 36729, 473940001, 155741521320033, 1453730786373283012225, 415588116056535702096428038017, 3278068950996636050857475073848209555969, 756475486389705843580676191270930552553654909184513, 5850304627708628483969594929628923064185219454493588333628772353
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n)^(1/n) ~ (1 + sqrt(2))^(2*n + 1) / (Pi*sqrt(2)*n). - Vaclav Kotesovec, Jul 10 2021
|
|
MATHEMATICA
|
a[n_] := Sum[(Binomial[n+k, k] * Binomial[n, k])^n, {k, 0, n} ]; Array[a, 11, 0] (* Amiram Eldar, Aug 06 2020 *)
|
|
PROG
|
(PARI) {a(n) = sum(k=0, n, (binomial(n+k, k)*binomial(n, k))^n)}
(Magma) [(&+[(Binomial(2*j, j)*Binomial(n+j, n-j))^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 31 2022
(SageMath)
def A336873(n): return sum((binomial(2*j, j)*binomial(n+j, n-j))^n for j in (0..n))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|