OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..37
FORMULA
a(n)^(1/n) ~ (1 + sqrt(2))^(2*n + 1) / (Pi*sqrt(2)*n). - Vaclav Kotesovec, Jul 10 2021
MATHEMATICA
a[n_] := Sum[(Binomial[n+k, k] * Binomial[n, k])^n, {k, 0, n} ]; Array[a, 11, 0] (* Amiram Eldar, Aug 06 2020 *)
PROG
(PARI) {a(n) = sum(k=0, n, (binomial(n+k, k)*binomial(n, k))^n)}
(Magma) [(&+[(Binomial(2*j, j)*Binomial(n+j, n-j))^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 31 2022
(SageMath)
def A336873(n): return sum((binomial(2*j, j)*binomial(n+j, n-j))^n for j in (0..n))
[A336873(n) for n in (0..20)] # G. C. Greubel, Aug 31 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 06 2020
STATUS
approved