login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336873
a(n) = Sum_{k=0..n} (binomial(n+k,k) * binomial(n,k))^n.
2
1, 3, 73, 36729, 473940001, 155741521320033, 1453730786373283012225, 415588116056535702096428038017, 3278068950996636050857475073848209555969, 756475486389705843580676191270930552553654909184513, 5850304627708628483969594929628923064185219454493588333628772353
OFFSET
0,2
FORMULA
a(n)^(1/n) ~ (1 + sqrt(2))^(2*n + 1) / (Pi*sqrt(2)*n). - Vaclav Kotesovec, Jul 10 2021
MATHEMATICA
a[n_] := Sum[(Binomial[n+k, k] * Binomial[n, k])^n, {k, 0, n} ]; Array[a, 11, 0] (* Amiram Eldar, Aug 06 2020 *)
PROG
(PARI) {a(n) = sum(k=0, n, (binomial(n+k, k)*binomial(n, k))^n)}
(Magma) [(&+[(Binomial(2*j, j)*Binomial(n+j, n-j))^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 31 2022
(SageMath)
def A336873(n): return sum((binomial(2*j, j)*binomial(n+j, n-j))^n for j in (0..n))
[A336873(n) for n in (0..20)] # G. C. Greubel, Aug 31 2022
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 06 2020
STATUS
approved