login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} (binomial(n+k,k) * binomial(n,k))^n.
2

%I #29 Sep 01 2022 05:00:15

%S 1,3,73,36729,473940001,155741521320033,1453730786373283012225,

%T 415588116056535702096428038017,

%U 3278068950996636050857475073848209555969,756475486389705843580676191270930552553654909184513,5850304627708628483969594929628923064185219454493588333628772353

%N a(n) = Sum_{k=0..n} (binomial(n+k,k) * binomial(n,k))^n.

%H Seiichi Manyama, <a href="/A336873/b336873.txt">Table of n, a(n) for n = 0..37</a>

%H Vaclav Kotesovec, <a href="/A336873/a336873.jpg">Plot of a(n)/(binomial(n + n/sqrt(2),n/sqrt(2)) * binomial(n,n/sqrt(2)))^n for n = 1..500</a>

%F a(n)^(1/n) ~ (1 + sqrt(2))^(2*n + 1) / (Pi*sqrt(2)*n). - _Vaclav Kotesovec_, Jul 10 2021

%t a[n_] := Sum[(Binomial[n+k, k] * Binomial[n, k])^n, {k, 0, n} ]; Array[a, 11, 0] (* _Amiram Eldar_, Aug 06 2020 *)

%o (PARI) {a(n) = sum(k=0, n, (binomial(n+k,k)*binomial(n,k))^n)}

%o (Magma) [(&+[(Binomial(2*j,j)*Binomial(n+j,n-j))^n: j in [0..n]]): n in [0..20]]; // _G. C. Greubel_, Aug 31 2022

%o (SageMath)

%o def A336873(n): return sum((binomial(2*j,j)*binomial(n+j, n-j))^n for j in (0..n))

%o [A336873(n) for n in (0..20)] # _G. C. Greubel_, Aug 31 2022

%Y Cf. A001850, A005259, A092813, A092814, A092815, A167010, A218689, A336829, A346200.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Aug 06 2020