login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239305
Expansion of (4*x^4-5*x^3-x^2+3*x-1) / (2*x^5+3*x^4-4*x^3-3*x^2+4*x-1).
0
1, 1, 2, 6, 13, 31, 69, 153, 332, 712, 1509, 3169, 6603, 13669, 28142, 57674, 117741, 239587, 486193, 984353, 1989056, 4012636, 8083717, 16266181, 32698903, 65678221, 131827874, 264447198, 530221357, 1062664807, 2129046429
OFFSET
0,3
FORMULA
a(n) = sum(k=0..n, ((k*n-1)*sum(i=0..n-k, 2^i*binomial(k+1,n-k-i)*binomial(k+i,k)*(-1)^(n-i+1)))/(k+1)).
G.f.: x*(x-1)*(4*x^3-x^2-2*x+1) / ( (-1+2*x)*(x^2+x-1)^2 ).
MATHEMATICA
CoefficientList[Series[(4*x^4-5*x^3-x^2+3*x-1) / (2*x^5+3*x^4-4*x^3-3*x^2+4*x-1), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 15 2014 *)
PROG
(Maxima)
a(n):=sum(((k*n-1)*sum(2^i*binomial(k+1, n-k-i)*binomial(k+i, k)*(-1)^(n-i+1), i, 0, n-k))/(k+1), k, 0, n);
CROSSREFS
Sequence in context: A369584 A336875 A219753 * A018013 A263899 A062424
KEYWORD
nonn,easy
AUTHOR
Vladimir Kruchinin, Mar 14 2014
STATUS
approved