login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097913
G.f.: (1+x^18)/((1-x)*(1-x^8)*(1-x^12)*(1-x^24)).
1
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6, 9, 9, 10, 10, 11, 11, 12, 12, 15, 15, 16, 16, 19, 19, 20, 20, 23, 23, 26, 26, 29, 29, 30, 30, 36, 36, 39, 39, 42, 42, 45, 45, 51, 51, 54, 54, 60, 60, 63, 63, 69, 69, 75, 75, 81, 81, 84, 84, 94, 94, 100, 100, 106, 106
OFFSET
0,9
COMMENTS
Conjectured Poincaré series [or Poincare series] for genus 2 Siegel theta series of odd unimodular lattices.
LINKS
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 1, -1).
MATHEMATICA
CoefficientList[Series[(1 + x^18)/((1 - x)*(1 - x^8)*(1 - x^12)*(1 - x^24)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
PROG
(PARI) x='x+O('x^30); Vec((1+x^18)/((1-x)*(1-x^8)*(1-x^12)*(1-x^24))) \\ G. C. Greubel, Dec 20 2017
CROSSREFS
Cf. A008718.
Sequence in context: A259506 A305817 A091226 * A029269 A352166 A272187
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 04 2004
STATUS
approved