|
|
A097913
|
|
G.f.: (1+x^18)/((1-x)*(1-x^8)*(1-x^12)*(1-x^24)).
|
|
1
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6, 9, 9, 10, 10, 11, 11, 12, 12, 15, 15, 16, 16, 19, 19, 20, 20, 23, 23, 26, 26, 29, 29, 30, 30, 36, 36, 39, 39, 42, 42, 45, 45, 51, 51, 54, 54, 60, 60, 63, 63, 69, 69, 75, 75, 81, 81, 84, 84, 94, 94, 100, 100, 106, 106
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,9
|
|
COMMENTS
|
Conjectured Poincaré series [or Poincare series] for genus 2 Siegel theta series of odd unimodular lattices.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
|
|
MATHEMATICA
|
CoefficientList[Series[(1 + x^18)/((1 - x)*(1 - x^8)*(1 - x^12)*(1 - x^24)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
|
|
PROG
|
(PARI) x='x+O('x^30); Vec((1+x^18)/((1-x)*(1-x^8)*(1-x^12)*(1-x^24))) \\ G. C. Greubel, Dec 20 2017
|
|
CROSSREFS
|
Cf. A008718.
Sequence in context: A259506 A305817 A091226 * A029269 A352166 A272187
Adjacent sequences: A097910 A097911 A097912 * A097914 A097915 A097916
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Sep 04 2004
|
|
STATUS
|
approved
|
|
|
|