login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n, k) = n*k*(n+k)*(n-k)/6.
0

%I #67 Jun 02 2023 09:37:01

%S 1,4,5,10,16,14,20,35,40,30,35,64,81,80,55,56,105,140,154,140,91,84,

%T 160,220,256,260,224,140,120,231,324,390,420,405,336,204,165,320,455,

%U 560,625,640,595,480,285,220,429,616,770,880,935,924,836,660,385,286,560,810,1024

%N Triangle read by rows: T(n, k) = n*k*(n+k)*(n-k)/6.

%C Given a Pythagorean triple (a,b,c), define S = c^4 - a^4 - b^4. Using Euclid's parameterization (a = 2*n*k, b = n^2 - k^2, c = n^2 + k^2), substituting to get S in terms of n and k gives S = 8*n^2*k^2*((n^2 - k^2))^2, which is a multiple of 288; T(n, k) = sqrt(S/288) = n*k*(n^2 - k^2)/6 = n*k*(n+k)*(n-k)/6.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Pythagorean_triple">Pythagorean Triple</a>.

%H <a href="/index/Ps#PyTrip">Index entries related to Pythagorean Triples</a>.

%e Triangle begins:

%e n/k 1 2 3 4 5 6 7

%e 2 1;

%e 3 4, 5;

%e 4 10, 16, 14;

%e 5 20, 35, 40, 30;

%e 6 35, 64, 81, 80, 55;

%e 7 56, 105, 140, 154, 140, 91;

%e 8 84, 160, 220, 256, 260, 224, 140;

%e ...

%e For n = 3, k = 2, a = 5, b = 12, c = 13. T(3, 2) = sqrt((13^4 - 5^4 - 12^4)/288) = 5.

%Y Cf. A120070 (b leg), A055096 (c hypotenuse).

%Y Cf. A006414 (row sums), A000292 (column 1), A077414 (column 2), A000330 (diagonal), A107984 (transpose), A210440 (diagonal which begins with 4).

%K nonn,easy,tabl

%O 2,2

%A _Ali Sada_ and _Yifan Xie_, Jun 14 2022