login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354965
a(1) = 4, a(2) = 6; a(3) = 9; thereafter a(n) is the smallest new semiprime such that the sum of four successive terms is semiprime.
0
4, 6, 9, 14, 10, 22, 39, 15, 35, 26, 46, 34, 49, 58, 25, 51, 21, 62, 69, 33, 38, 65, 77, 55, 57, 85, 94, 87, 95, 82, 91, 93, 111, 86, 121, 119, 143, 106, 129, 115, 123, 118, 122, 74, 133, 142, 166, 145, 158, 202, 169, 177, 141, 146, 159, 183, 134, 203, 161, 187, 155, 178, 201, 215, 185, 206, 209, 194
OFFSET
1,1
MATHEMATICA
s = {4, 6, 9}; Do[a = s[[-1]] + s[[-2]] + s[[-3]]; n = 10; While[MemberQ[s, n] || 2 != PrimeOmega[n] || 2 != PrimeOmega[a + n], n++]; AppendTo[s, n], {120}]; s
PROG
(PARI) issp(k) = bigomega(k)==2; \\ A001358
lista(nn) = my(va = vector(nn)); va[1]=4; va[2]=6; va[3]=9; my(vs = vecsort(va)); my(s=sum(k=1, 3, va[k])); for (n=4, nn, my(k=1); while (!(issp(k) && issp(k+s) && !vecsearch(vs, k)), k++); va[n]=k; vs = vecsort(va); s += k - va[n-3]; ); va; \\ Michel Marcus, Aug 04 2022
CROSSREFS
Cf. A001358 (semiprimes), A338309.
Sequence in context: A048625 A120134 A241451 * A288379 A112381 A182150
KEYWORD
nonn
AUTHOR
Zak Seidov, Jun 13 2022
STATUS
approved