The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048625 Pisot sequence P(4,6). 3
 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961, 8407925, 12322413, 18059374 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Conjecture: satisfies a linear recurrence having signature (1, 0, 1). - Harvey P. Dale, Jun 05 2021 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 FORMULA a(n) = a(n-1) + a(n-3) (Checked up to n = 48000). G.f.: (conjecture) (( Q(0)-1)/2 -(x+x^2+x^3+2*x^4+3*x^5))/x^6, where Q(k) = 1 + x^3 + (2*k+3)*x - x*(2*k+1 + x^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013 MAPLE P := proc(a0, a1, n)     option remember;     if n = 0 then         a0 ;     elif n = 1 then         a1;     else         ceil( procname(a0, a1, n-1)^2/procname(a0, a1, n-2)-1/2) ;     end if; end proc: A048625 := proc(n)     P(4, 6, n) ; end proc: # R. J. Mathar, Feb 12 2016 PROG (PARI) pisotP(nmax, a1, a2) = {   a=vector(nmax); a[1]=a1; a[2]=a2;   for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]-1/2));   a } pisotP(50, 4, 6) \\ Colin Barker, Aug 08 2016 CROSSREFS Subsequence of A000930. See A008776 for definitions of Pisot sequences. Sequence in context: A283623 A020747 A010737 * A120134 A241451 A288379 Adjacent sequences:  A048622 A048623 A048624 * A048626 A048627 A048628 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 09:39 EDT 2022. Contains 353975 sequences. (Running on oeis4.)