login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241451 Number of partitions p of n such that the number of parts having multiplicity 1 is a part or max(p) - min(p) is a part. 5
0, 1, 0, 1, 1, 4, 6, 9, 13, 21, 28, 35, 52, 68, 89, 121, 155, 205, 264, 340, 433, 555, 693, 872, 1095, 1367, 1695, 2107, 2580, 3180, 3911, 4773, 5803, 7083, 8565, 10364, 12515, 15077, 18075, 21721, 25936, 31023, 36954, 43984, 52152, 61966, 73238, 86586 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Table of n, a(n) for n=0..47.

FORMULA

a(n) + A241450(n) = A000041(n) for n >= 0.

EXAMPLE

a(6) counts these 6 partitions:  42, 411, 321, 3111, 2211, 21111.

MATHEMATICA

z = 30; f[n_] := f[n] = IntegerPartitions[n]; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == 1 &]]]; d[p_] := Length[DeleteDuplicates[p]];

Table[Count[f[n], p_ /; MemberQ[p, u[p]] && MemberQ[p, Max[p]-Min[p]]], {n, 0, z}]  (* A241447 *)

Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && MemberQ[p, Max[p]-Min[p]] ], {n, 0,  z}] (* A241448 *)

Table[Count[f[n], p_ /; MemberQ[p, u[p]] && ! MemberQ[p, Max[p]-Min[p]] ], {n, 0, z}] (* A241449 *)

Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && ! MemberQ[p, Max[p]-Min[p]] ], {n, 0, z}] (* A241450 *)

Table[Count[f[n], p_ /; MemberQ[p, u[p]] || MemberQ[p, Max[p]-Min[p]] ], {n, 0, z}] (* A241451 *)

CROSSREFS

Cf. A241447, A241448, A241449, A241450.

Sequence in context: A010737 A048625 A120134 * A288379 A112381 A182150

Adjacent sequences:  A241448 A241449 A241450 * A241452 A241453 A241454

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 07:25 EDT 2022. Contains 354093 sequences. (Running on oeis4.)