login
A048627
Numbers m such that the maximal value of A001222(binomial(m,k)) and the central value A001222(A001405(m)) are identical.
2
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 22, 23, 26, 27, 28, 29, 30, 39, 45, 46, 47, 51, 58, 59, 61, 62, 63, 86, 87, 93, 94, 95, 118, 119, 122, 123, 124, 125, 126, 147, 148, 158, 159, 178, 179, 187, 188, 189, 190, 214, 215, 221, 222, 236, 237, 238, 245, 246, 247, 248, 249, 253, 254
OFFSET
1,2
COMMENTS
Indexes of 0's in A048622. - Sean A. Irvine, Jun 24 2021
LINKS
EXAMPLE
For m=23, A001222 for binomial(23,k) = {0,1,2,3,4,4,5,5,6,6,6,6,6,6,6,6,5,5,4,4,3,2,1,0}, thus both the maximal and central values are 6, so 23 is a term.
MATHEMATICA
Select[Range[120], Function[n, ar = PrimeOmega[#] & /@ Binomial[n, Range[0, n/2]]; Max[ar] == ar[[-1]]]] (* Ivan Neretin, Sep 07 2015 *)
PROG
(PARI) isok(m) = vecmax(apply(bigomega, vector(m+1, k, binomial(m, k-1)))) == bigomega(binomial(m, m\2)); \\ Michel Marcus, Jun 25 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved