Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Aug 05 2022 07:43:46
%S 4,6,9,14,10,22,39,15,35,26,46,34,49,58,25,51,21,62,69,33,38,65,77,55,
%T 57,85,94,87,95,82,91,93,111,86,121,119,143,106,129,115,123,118,122,
%U 74,133,142,166,145,158,202,169,177,141,146,159,183,134,203,161,187,155,178,201,215,185,206,209,194
%N a(1) = 4, a(2) = 6; a(3) = 9; thereafter a(n) is the smallest new semiprime such that the sum of four successive terms is semiprime.
%t s = {4, 6, 9}; Do[a = s[[-1]] + s[[-2]] + s[[-3]]; n = 10; While[MemberQ[s, n] || 2 != PrimeOmega[n] || 2 != PrimeOmega[a + n], n++]; AppendTo[s, n], {120}]; s
%o (PARI) issp(k) = bigomega(k)==2; \\ A001358
%o lista(nn) = my(va = vector(nn)); va[1]=4; va[2]=6; va[3]=9; my(vs = vecsort(va)); my(s=sum(k=1, 3, va[k])); for (n=4, nn, my(k=1); while (!(issp(k) && issp(k+s) && !vecsearch(vs, k)), k++); va[n]=k; vs = vecsort(va); s += k - va[n-3];); va; \\ _Michel Marcus_, Aug 04 2022
%Y Cf. A001358 (semiprimes), A338309.
%K nonn
%O 1,1
%A _Zak Seidov_, Jun 13 2022