login
A336130
Number of ways to split a strict composition of n into contiguous subsequences all having the same sum.
17
1, 1, 1, 3, 3, 5, 15, 13, 23, 27, 73, 65, 129, 133, 241, 375, 519, 617, 1047, 1177, 1859, 2871, 3913, 4757, 7653, 8761, 13273, 16155, 28803, 30461, 50727, 55741, 87743, 100707, 152233, 168425, 308937, 315973, 500257, 571743, 871335, 958265, 1511583, 1621273, 2449259, 3095511, 4335385, 4957877, 7554717, 8407537, 12325993, 14301411, 20348691, 22896077, 33647199, 40267141, 56412983, 66090291, 93371665, 106615841, 155161833
OFFSET
0,4
EXAMPLE
The a(1) = 1 through a(7) = 13 splits:
(1) (2) (3) (4) (5) (6) (7)
(1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (3,1) (2,3) (2,4) (2,5)
(3,2) (4,2) (3,4)
(4,1) (5,1) (4,3)
(1,2,3) (5,2)
(1,3,2) (6,1)
(2,1,3) (1,2,4)
(2,3,1) (1,4,2)
(3,1,2) (2,1,4)
(3,2,1) (2,4,1)
(1,2),(3) (4,1,2)
(2,1),(3) (4,2,1)
(3),(1,2)
(3),(2,1)
MATHEMATICA
splits[dom_]:=Append[Join@@Table[Prepend[#, Take[dom, i]]&/@splits[Drop[dom, i]], {i, Length[dom]-1}], {dom}];
Table[Sum[Length[Select[splits[ctn], SameQ@@Total/@#&]], {ctn, Join@@Permutations/@Select[IntegerPartitions[n], UnsameQ@@#&]}], {n, 0, 15}]
CROSSREFS
The version with different instead of equal sums is A336128.
Starting with a non-strict composition gives A074854.
Starting with a partition gives A317715.
Starting with a strict partition gives A318683.
Set partitions with equal block-sums are A035470.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.
Sequence in context: A183483 A218663 A095355 * A069834 A064038 A051684
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 11 2020
EXTENSIONS
a(31)-a(60) from Max Alekseyev, Feb 14 2024
STATUS
approved