login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336134
Number of ways to split an integer partition of n into contiguous subsequences with strictly increasing sums.
11
1, 1, 2, 4, 6, 11, 17, 27, 37, 62, 82, 125, 168, 246, 320, 462, 585, 839, 1078, 1466, 1830, 2528, 3136, 4188, 5210, 6907, 8498, 11177, 13570, 17668, 21614, 27580, 33339, 42817, 51469, 65083, 78457, 98409, 117602, 147106, 174663, 217400, 259318, 319076, 377707
OFFSET
0,3
LINKS
EXAMPLE
The a(1) = 1 through a(6) = 17 splits:
(1) (2) (3) (4) (5) (6)
(1,1) (2,1) (2,2) (3,2) (3,3)
(1,1,1) (3,1) (4,1) (4,2)
(1),(1,1) (2,1,1) (2,2,1) (5,1)
(1,1,1,1) (3,1,1) (2,2,2)
(1),(1,1,1) (2,1,1,1) (3,2,1)
(2),(2,1) (4,1,1)
(1,1,1,1,1) (2,2,1,1)
(2),(1,1,1) (2),(2,2)
(1),(1,1,1,1) (3,1,1,1)
(1,1),(1,1,1) (2,1,1,1,1)
(2),(2,1,1)
(1,1,1,1,1,1)
(2),(1,1,1,1)
(1),(1,1,1,1,1)
(1,1),(1,1,1,1)
(1),(1,1),(1,1,1)
MATHEMATICA
splits[dom_]:=Append[Join@@Table[Prepend[#, Take[dom, i]]&/@splits[Drop[dom, i]], {i, Length[dom]-1}], {dom}];
Table[Sum[Length[Select[splits[ctn], Less@@Total/@#&]], {ctn, IntegerPartitions[n]}], {n, 0, 10}]
PROG
(PARI) a(n)={my(recurse(r, m, s, t, f)=if(m==0, r==0, if(f && r > t && t >= s, self()(r, m, t+1, 0, 0)) + self()(r, m-1, s, t, 0) + self()(r-m, min(m, r-m), s, t+m, 1))); recurse(n, n, 0, 0, 0)} \\ Andrew Howroyd, Jan 18 2024
CROSSREFS
The version with equal sums is A317715.
The version with strictly decreasing sums is A336135.
The version with weakly decreasing sums is A316245.
The version with different sums is A336131.
Starting with a composition gives A304961.
Starting with a strict partition gives A336133.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.
Sequence in context: A294811 A333162 A336307 * A255214 A222047 A210520
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 11 2020
EXTENSIONS
a(21) onwards from Andrew Howroyd, Jan 18 2024
STATUS
approved