login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A336134 Number of ways to split an integer partition of n into contiguous subsequences with strictly increasing sums. 10
1, 1, 2, 4, 6, 11, 17, 27, 37, 62, 82, 125, 168, 246, 320, 462, 585, 839, 1078, 1466, 1830 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
EXAMPLE
The a(1) = 1 through a(6) = 17 splits:
(1) (2) (3) (4) (5) (6)
(1,1) (2,1) (2,2) (3,2) (3,3)
(1,1,1) (3,1) (4,1) (4,2)
(1),(1,1) (2,1,1) (2,2,1) (5,1)
(1,1,1,1) (3,1,1) (2,2,2)
(1),(1,1,1) (2,1,1,1) (3,2,1)
(2),(2,1) (4,1,1)
(1,1,1,1,1) (2,2,1,1)
(2),(1,1,1) (2),(2,2)
(1),(1,1,1,1) (3,1,1,1)
(1,1),(1,1,1) (2,1,1,1,1)
(2),(2,1,1)
(1,1,1,1,1,1)
(2),(1,1,1,1)
(1),(1,1,1,1,1)
(1,1),(1,1,1,1)
(1),(1,1),(1,1,1)
MATHEMATICA
splits[dom_]:=Append[Join@@Table[Prepend[#, Take[dom, i]]&/@splits[Drop[dom, i]], {i, Length[dom]-1}], {dom}];
Table[Sum[Length[Select[splits[ctn], Less@@Total/@#&]], {ctn, IntegerPartitions[n]}], {n, 0, 10}]
CROSSREFS
The version with equal sums is A317715.
The version with strictly decreasing sums is A336135.
The version with weakly decreasing sums is A316245.
The version with different sums is A336131.
Starting with a composition gives A304961.
Starting with a strict partition gives A336133.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.
Sequence in context: A294811 A333162 A336307 * A255214 A222047 A210520
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 11 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 2 22:56 EDT 2023. Contains 363102 sequences. (Running on oeis4.)