login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294811
Let b(n) be the number of permutations {c_1..c_n} of {1..n} for which c_1 - c_2 + ... + (-1)^(n-1)*c_n are triangular numbers (A000217). Then a(n) = b(n)/A010551(n).
2
1, 1, 1, 1, 2, 4, 6, 11, 16, 30, 48, 97, 157, 322, 524, 1077, 1777, 3684, 6157, 12876, 21684, 45520, 77212, 162533, 277608, 585993, 1006784, 2129433, 3677453, 7788711, 13514487, 28654668, 49933938, 105964856, 185377690, 393631445, 691101516, 1468137470
OFFSET
0,5
COMMENTS
All terms are positive integers (for a proof, cf. comment in A293984). Note that a(1), a(2), a(3), a(4) remain the same if in the definition the triangular numbers are replaced by k-gonal numbers for k >= 5.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..250 (terms n=1..200 from Peter J. C. Moses)
EXAMPLE
Let n=3. For a permutation C={c_1,c_2,c_3}, set s = s(C) = c_1 - c_2 + c_3. We have the permutations:
1,2,3; s=2
1,3,2; s=0
2,1,3; s=4
2,3,1; s=0
3,1,2; s=4
3,2,1; s=2
Here there are 2 permutations for which {s} are triangular numbers (when s = 0). Further, since A010551(3) = 2, then a(3) = 1.
Let n=4. For a permutation C={c_1,c_2,c_3,c_4}, set s = s(C) = c_1 - c_2 + c_3 - c_4. We have the permutations:
1,2,3,4; s=-2
1,3,2,4; s=-4
2,1,3,4; s=0
2,3,1,4; s=-4
3,1,2,4; s=0
3,2,1,4; s=-2
1,2,4,3; s=0
1,3,4,2; s=0
2,1,4,3; s=2
2,3,4,1; s=2
3,1,4,2; s=4
3,2,4,1; s=4
1,4,2,3; s=-4
1,4,3,2; s=-2
2,4,1,3; s=-4
2,4,3,1; s=0
3,4,1,2; s=-2
3,4,2,1; s=0
4,1,2,3; s=2
4,1,3,2; s=4
4,2,1,3; s=0
4,2,3,1; s=4
4,3,1,2; s=0
4,3,2,1; s=2
Here there are 8 permutations for which {s} are triangular numbers (when s = 0). Further, since A010551(4) = 4, then a(4) = 8/4 = 2.
MAPLE
b:= proc(p, m, s) option remember; (n-> `if`(n=0, `if`(issqr(8*s+1), 1, 0),
`if`(p>0, b(p-1, m, s+n), 0)+`if`(m>0, b(p, m-1, s-n), 0)))(p+m)
end:
a:= n-> (t-> b(n-t, t, 0))(iquo(n, 2)):
seq(a(n), n=0..40); # Alois P. Heinz, Sep 17 2020
MATHEMATICA
polyQ[order_, n_]:=If[n==0, True, IntegerQ[(#-4+Sqrt[(#-4)^2+8 n (#-2)])/(2 (#-2))]&[order]]; (*is a number polygonal?*)
Map[Total, Table[
possibleSums=Range[1/2-(-1)^n/2-Floor[n/2]^2, Floor[(n+1)/2]^2];
filteredSums=Select[possibleSums, polyQ[3, #]&&#>-1&];
positions=Map[Flatten[{#, Position[possibleSums, #, 1]-1}]&, filteredSums];
Map[SeriesCoefficient[QBinomial[n, Floor[(n+1)/2], q], {q, 0, #[[2]]/2}]&, positions], {n, 25}]] (* Peter J. C. Moses, Jan 02 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Sep 17 2020
STATUS
approved