login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294812
Let b(n) be the number of permutations {c_1..c_n} of {1..n} for which c_1 - c_2 + ... + (-1)^(n-1)*c_n are pentagonal numbers (A000326). Then a(n) = b(n)/A010551(n).
1
1, 1, 1, 2, 4, 5, 6, 10, 23, 38, 70, 110, 196, 346, 759, 1250, 2313, 3982, 8433, 14520, 29437, 50466, 102830, 179587, 376439, 654374, 1343540, 2352149, 4916286, 8654120, 18065200, 31783592, 66233160, 117371504, 246610521, 436972949, 913862320, 1626523783
OFFSET
1,4
COMMENTS
All terms are positive integers (for a proof, cf. comment in A293984).
Note that a(1), a(2), a(3), a(4) remain the same, if in the definition the pentagonal numbers are replaced by k-gonal numbers for k >= 3 other than k=4.
LINKS
MATHEMATICA
polyQ[order_, n_]:=If[n==0, True, IntegerQ[(#-4+Sqrt[(#-4)^2+8 n (#-2)])/(2 (#-2))]&[order]]; (*is a number polygonal?*)
Map[Total, Table[
possibleSums=Range[1/2-(-1)^n/2-Floor[n/2]^2, Floor[(n+1)/2]^2];
filteredSums=Select[possibleSums, polyQ[5, #]&&#>-1&];
positions=Map[Flatten[{#, Position[possibleSums, #, 1]-1}]&, filteredSums];
Map[SeriesCoefficient[QBinomial[n, Floor[(n+1)/2], q], {q, 0, #[[2]]/2}]&, positions], {n, 25}]] (* Peter J. C. Moses, Jan 02 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved