login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336132
Number of ways to split a strict integer partition of n into contiguous subsequences all having different sums.
13
1, 1, 1, 3, 3, 5, 8, 11, 14, 21, 30, 37, 51, 66, 86, 120, 146, 186, 243, 303, 378, 495, 601, 752, 927, 1150, 1395, 1741, 2114, 2571, 3134, 3788, 4541, 5527, 6583, 7917, 9511, 11319, 13448, 16040, 18996, 22455, 26589, 31317, 36844, 43518, 50917, 59655, 69933
OFFSET
0,4
EXAMPLE
The a(1) = 1 through a(7) = 14 splits:
(1) (2) (3) (4) (5) (6) (7)
(2,1) (3,1) (3,2) (4,2) (4,3)
(2),(1) (3),(1) (4,1) (5,1) (5,2)
(3),(2) (3,2,1) (6,1)
(4),(1) (4),(2) (4,2,1)
(5),(1) (4),(3)
(3,2),(1) (5),(2)
(3),(2),(1) (6),(1)
(4),(2,1)
(4,2),(1)
(4),(2),(1)
MATHEMATICA
splits[dom_]:=Append[Join@@Table[Prepend[#, Take[dom, i]]&/@splits[Drop[dom, i]], {i, Length[dom]-1}], {dom}];
Table[Sum[Length[Select[splits[ctn], UnsameQ@@Total/@#&]], {ctn, Select[IntegerPartitions[n], UnsameQ@@#&]}], {n, 0, 30}]
CROSSREFS
The version with equal instead of different sums is A318683.
Starting with a composition gives A336127.
Starting with a strict composition gives A336128.
Starting with a partition gives A336131.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.
Sequence in context: A285069 A262736 A318684 * A200737 A200741 A271970
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 11 2020
STATUS
approved