|
|
A336132
|
|
Number of ways to split a strict integer partition of n into contiguous subsequences all having different sums.
|
|
13
|
|
|
1, 1, 1, 3, 3, 5, 8, 11, 14, 21, 30, 37, 51, 66, 86, 120, 146, 186, 243, 303, 378, 495, 601, 752, 927, 1150, 1395, 1741, 2114, 2571, 3134, 3788, 4541, 5527, 6583, 7917, 9511, 11319, 13448, 16040, 18996, 22455, 26589, 31317, 36844, 43518, 50917, 59655, 69933
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
EXAMPLE
|
The a(1) = 1 through a(7) = 14 splits:
(1) (2) (3) (4) (5) (6) (7)
(2,1) (3,1) (3,2) (4,2) (4,3)
(2),(1) (3),(1) (4,1) (5,1) (5,2)
(3),(2) (3,2,1) (6,1)
(4),(1) (4),(2) (4,2,1)
(5),(1) (4),(3)
(3,2),(1) (5),(2)
(3),(2),(1) (6),(1)
(4),(2,1)
(4,2),(1)
(4),(2),(1)
|
|
MATHEMATICA
|
splits[dom_]:=Append[Join@@Table[Prepend[#, Take[dom, i]]&/@splits[Drop[dom, i]], {i, Length[dom]-1}], {dom}];
Table[Sum[Length[Select[splits[ctn], UnsameQ@@Total/@#&]], {ctn, Select[IntegerPartitions[n], UnsameQ@@#&]}], {n, 0, 30}]
|
|
CROSSREFS
|
The version with equal instead of different sums is A318683.
Starting with a composition gives A336127.
Starting with a strict composition gives A336128.
Starting with a partition gives A336131.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|