login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317301
Sequence obtained by taking the general formula for generalized k-gonal numbers: m*((k - 2)*m - k + 4)/2, where m = 0, +1, -1, +2, -2, +3, -3, ... and k >= 5. Here k = 1.
3
0, 1, -2, 1, -5, 0, -9, -2, -14, -5, -20, -9, -27, -14, -35, -20, -44, -27, -54, -35, -65, -44, -77, -54, -90, -65, -104, -77, -119, -90, -135, -104, -152, -119, -170, -135, -189, -152, -209, -170, -230, -189, -252, -209, -275, -230, -299, -252, -324, -275, -350, -299, -377, -324, -405, -350, -434
OFFSET
0,3
COMMENTS
Taking the same formula with k = 0 we have A317300.
Taking the same formula with k = 2 we have A001057 (canonical enumeration of integers).
Taking the same formula with k = 3 we have 0 together with A008795 (Molien series for 3-dimensional representation of dihedral group D_6 of order 6).
Taking the same formula with k = 4 we have A008794 (squares repeated) except the initial zero.
Taking the same formula with k >= 5 we have the generalized k-gonal numbers (see Crossrefs section).
FORMULA
From Bruno Berselli, Jul 30 2018: (Start)
O.g.f.: x*(1 - 3*x + x^2)/((1 + x)^2*(1 - x)^3).
E.g.f.: (-5*(1 + 2*x) + (5 - 2*x^2)*exp(2*x))*exp(-x)/16.
a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (-2*n*(n + 1) - 5*(2*n + 1)*(-1)^n + 5)/16. Therefore:
a(n) = -n*(n + 6)/8 for even n;
a(n) = -(n - 5)*(n + 1)/8 for odd n. Also:
a(n) = a(n-5) for odd n > 3.
2*(2*n - 1)*a(n) + 2*(2*n + 1)*a(n-1) + n*(n^2 - 3) = 0. (End)
MATHEMATICA
Table[(-2 n (n + 1) - 5 (2 n + 1) (-1)^n + 5)/16, {n, 0, 60}] (* Bruno Berselli, Jul 30 2018 *)
PROG
(Magma) /* By definition: */ k:=1; [0] cat [m*i*((k-2)*m*i-k+4)/2: i in [1, -1], m in [1..30]]; // Bruno Berselli, Jul 30 2018
(PARI) concat(0, Vec(x*(1 - 3*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^50))) \\ Colin Barker, Aug 01 2018
CROSSREFS
Row 1 of A303301.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
Sequence in context: A058241 A021827 A338554 * A131915 A078036 A369865
KEYWORD
sign,easy
AUTHOR
Omar E. Pol, Jul 29 2018
STATUS
approved