OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph. The z-density of a multiset S of positive integers is Sum_{s in S} (omega(s) - 1) - omega(lcm(S)). Finally, a z-tree of weight n is a connected strict integer partition of n with at least two pairwise indivisible parts and z-density -1.
EXAMPLE
2639 is the Heinz number of {4,6,10}, a z-tree corresponding to the multiset system {{1,1},{1,2},{1,3}}.
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
Select[Range[3000], With[{p=primeMS[#]}, And[UnsameQ@@p, Length[p]>1, zensity[p]==-1, Length[zsm[p]]==1, Select[Tuples[p, 2], UnsameQ@@#&&Divisible@@#&]=={}]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 10 2018
STATUS
approved