OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
FORMULA
Empirical: a(n) = 3*a(n-1) +9*a(n-2) -31*a(n-3) -30*a(n-4) +125*a(n-5) +48*a(n-6) -251*a(n-7) -46*a(n-8) +264*a(n-9) +40*a(n-10) -138*a(n-11) -28*a(n-12) +28*a(n-13) +8*a(n-14)
EXAMPLE
Some solutions for n=3
.-5..2.-5..2...-7..3.-7..2....6..0..6.-3....3.-5..3..1...-6..0.-3..6
..2..1..2..1....3..1..3..2....0.-6..0.-3...-5..7.-5..1....0..6.-3..0
.-5..2.-5..2...-7..3.-7..2....6..0..6.-3....3.-5..3..1...-3.-3..0..3
..2..1..2..1....2..2..2..3...-3.-3.-3..0....1..1..1.-5....6..0..3.-6
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 11 2012
STATUS
approved