login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A211444
Number of (n+1)X(n+1) -7..7 symmetric matrices with every 2X2 subblock having sum zero and two or three distinct values
1
112, 294, 656, 1404, 2890, 5896, 11792, 23678, 46864, 93614, 184790, 368876, 728858, 1457004, 2886784, 5784714, 11502262, 23114684, 46139666, 92997430, 186362182, 376728674, 757813990, 1536216028, 3101292166, 6303428906, 12767750824
OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) +11*a(n-2) -89*a(n-3) -13*a(n-4) +684*a(n-5) -385*a(n-6) -2968*a(n-7) +2808*a(n-8) +7974*a(n-9) -9684*a(n-10) -13663*a(n-11) +19830*a(n-12) +14785*a(n-13) -25455*a(n-14) -9593*a(n-15) +20503*a(n-16) +3277*a(n-17) -10058*a(n-18) -372*a(n-19) +2842*a(n-20) -58*a(n-21) -416*a(n-22) +12*a(n-23) +24*a(n-24)
EXAMPLE
Some solutions for n=3
..2..0..2..0....6..0..3.-6....4..0..2.-3....0.-2.-2..2...-1..2.-3..2
..0.-2..0.-2....0.-6..3..0....0.-4..2.-1...-2..4..0..0....2.-3..4.-3
..2..0..2..0....3..3..0.-3....2..2..0.-1...-2..0.-4..4...-3..4.-5..4
..0.-2..0.-2...-6..0.-3..6...-3.-1.-1..2....2..0..4.-4....2.-3..4.-3
CROSSREFS
Sequence in context: A296579 A297970 A296185 * A270759 A352585 A233892
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 11 2012
STATUS
approved