login
A283424
Number T(n,k) of blocks of size >= k in all set partitions of [n], assuming that every set partition contains one block of size zero; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
14
1, 2, 1, 5, 3, 1, 15, 10, 4, 1, 52, 37, 17, 5, 1, 203, 151, 76, 26, 6, 1, 877, 674, 362, 137, 37, 7, 1, 4140, 3263, 1842, 750, 225, 50, 8, 1, 21147, 17007, 9991, 4307, 1395, 345, 65, 9, 1, 115975, 94828, 57568, 25996, 8944, 2392, 502, 82, 10, 1
OFFSET
0,2
COMMENTS
T(n,k) is defined for all n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n.
LINKS
FORMULA
T(n,k) = Sum_{j=0..n-k} binomial(n,j) * Bell(j).
T(n,k) = Bell(n+1) - Sum_{j=0..k-1} binomial(n,j) * Bell(n-j).
T(n,k) = Sum_{j=k..n} A056857(n+1,j) = Sum_{j=k..n} A056860(n+1,n+1-j).
Sum_{k=0..n} T(n,k) = n*Bell(n)+Bell(n+1) = A124427(n+1).
Sum_{k=1..n} T(n,k) = n*Bell(n) = A070071(n).
T(n,0)-T(n,1) = Bell(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A224271(n+1). - Alois P. Heinz, May 17 2023
EXAMPLE
T(3,2) = 4 because the number of blocks of size >= 2 in all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 1+1+1+1+0 = 4.
Triangle T(n,k) begins:
1;
2, 1;
5, 3, 1;
15, 10, 4, 1;
52, 37, 17, 5, 1;
203, 151, 76, 26, 6, 1;
877, 674, 362, 137, 37, 7, 1;
4140, 3263, 1842, 750, 225, 50, 8, 1;
21147, 17007, 9991, 4307, 1395, 345, 65, 9, 1;
...
MAPLE
T:= proc(n, k) option remember; `if`(k>n, 0,
binomial(n, k)*combinat[bell](n-k)+T(n, k+1))
end:
seq(seq(T(n, k), k=0..n), n=0..14);
MATHEMATICA
T[n_, k_] := Sum[Binomial[n, j]*BellB[j], {j, 0, n - k}];
Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2018 *)
CROSSREFS
Columns k=0-10 give: A000110(n+1), A138378 or A005493(n-1), A124325, A288785, A288786, A288787, A288788, A288789, A288790, A288791, A288792.
Row sums give A124427(n+1).
T(2n,n) gives A286896.
Sequence in context: A188416 A361654 A160185 * A188392 A356558 A143409
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 14 2017
STATUS
approved