login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286896
Number of blocks of size >= n in all set partitions of [2n].
2
1, 3, 17, 137, 1395, 16955, 237426, 3740609, 65197797, 1241499241, 25577181324, 565688751435, 13346516581331, 334144326030052, 8837737924901855, 245998212661731213, 7182425756528424275, 219332432679783740235, 6987451758608249737342, 231704015156531645221237
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{j=0..n} binomial(2n,j) * Bell(j).
a(n) = A283424(2n,n).
a(n) ~ 2^(2*n) * exp(n/LambertW(n) - n - 1) * n^(n - 1/2) / (sqrt(Pi*(1 + LambertW(n))) * LambertW(n)^n). - Vaclav Kotesovec, Jul 23 2021
EXAMPLE
a(2) = 17: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34. Here three set partitions contain 2 blocks of size 2.
MAPLE
b:= proc(n, k) option remember; `if`(k>n, 0,
binomial(n, k)*combinat[bell](n-k)+b(n, k+1))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..25);
MATHEMATICA
a[n_] := Sum[Binomial[2 n, j] BellB[j], {j, 0, n}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 28 2018 *)
CROSSREFS
Sequence in context: A350736 A231909 A331688 * A244432 A219503 A230387
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 15 2017
STATUS
approved