login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of blocks of size >= n in all set partitions of [2n].
2

%I #13 Jul 23 2021 04:13:16

%S 1,3,17,137,1395,16955,237426,3740609,65197797,1241499241,25577181324,

%T 565688751435,13346516581331,334144326030052,8837737924901855,

%U 245998212661731213,7182425756528424275,219332432679783740235,6987451758608249737342,231704015156531645221237

%N Number of blocks of size >= n in all set partitions of [2n].

%H Alois P. Heinz, <a href="/A286896/b286896.txt">Table of n, a(n) for n = 0..445</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%F a(n) = Sum_{j=0..n} binomial(2n,j) * Bell(j).

%F a(n) = A283424(2n,n).

%F a(n) ~ 2^(2*n) * exp(n/LambertW(n) - n - 1) * n^(n - 1/2) / (sqrt(Pi*(1 + LambertW(n))) * LambertW(n)^n). - _Vaclav Kotesovec_, Jul 23 2021

%e a(2) = 17: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34. Here three set partitions contain 2 blocks of size 2.

%p b:= proc(n, k) option remember; `if`(k>n, 0,

%p binomial(n, k)*combinat[bell](n-k)+b(n, k+1))

%p end:

%p a:= n-> b(2*n, n):

%p seq(a(n), n=0..25);

%t a[n_] := Sum[Binomial[2 n, j] BellB[j], {j, 0, n}];

%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, May 28 2018 *)

%Y Cf. A000110, A283424.

%K nonn

%O 0,2

%A _Alois P. Heinz_, May 15 2017