login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288788
Number of blocks of size >= 6 in all set partitions of n.
2
1, 8, 65, 502, 3851, 29921, 237426, 1932529, 16173029, 139320277, 1235847277, 11288120480, 106132359679, 1026681599731, 10212591089574, 104393925768077, 1095895294558168, 11806719056706773, 130457490607638988, 1477428802636263486, 17138268233851671782
OFFSET
6,2
LINKS
FORMULA
a(n) = Bell(n+1) - Sum_{j=0..5} binomial(n,j) * Bell(n-j).
a(n) = Sum_{j=0..n-6} binomial(n,j) * Bell(j).
E.g.f.: (exp(x) - Sum_{k=0..5} x^k/k!) * exp(exp(x) - 1). - Ilya Gutkovskiy, Jun 26 2022
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*binomial(n-1, j-1), j=1..n))
end:
g:= proc(n, k) option remember; `if`(n<k, 0,
g(n, k+1) +binomial(n, k)*b(n-k))
end:
a:= n-> g(n, 6):
seq(a(n), n=6..30);
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j]*Binomial[n-1, j-1], {j, 1, n}]];
g[n_, k_] := g[n, k] = If[n < k, 0, g[n, k + 1] + Binomial[n, k]*b[n - k]];
a[n_] := g[n, 6];
Table[a[n], {n, 6, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)
CROSSREFS
Column k=6 of A283424.
Cf. A000110.
Sequence in context: A293802 A316872 A317600 * A033118 A033126 A022039
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 15 2017
STATUS
approved