login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317600
Number of nX4 0..1 arrays with every element unequal to 0, 1, 2, 3, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
1
8, 65, 435, 3047, 20805, 143866, 994993, 6892556, 47747495, 330696013, 2290523877, 15865339426, 109889859960, 761143341606, 5272010289643, 36516212627935, 252926973440552, 1751881144044050, 12134283040744869, 84047266827333127
OFFSET
1,1
COMMENTS
Column 4 of A317604.
LINKS
FORMULA
Empirical: a(n) = 9*a(n-1) -14*a(n-2) +30*a(n-3) -237*a(n-4) -3*a(n-5) +302*a(n-6) +1662*a(n-7) +2290*a(n-8) +955*a(n-9) -9368*a(n-10) -9888*a(n-11) +902*a(n-12) -52619*a(n-13) +12475*a(n-14) -95579*a(n-15) -114315*a(n-16) +236073*a(n-17) +543992*a(n-18) +999845*a(n-19) +1459543*a(n-20) +611564*a(n-21) -384923*a(n-22) -556857*a(n-23) -3259047*a(n-24) -1956731*a(n-25) -11545488*a(n-26) -6902245*a(n-27) -14112532*a(n-28) -16003389*a(n-29) +6245021*a(n-30) -25134138*a(n-31) -4827154*a(n-32) +6290458*a(n-33) +12260605*a(n-34) -9136962*a(n-35) +25045115*a(n-36) +31879347*a(n-37) -19656317*a(n-38) +68998896*a(n-39) +12779960*a(n-40) +9965538*a(n-41) +26731245*a(n-42) +14778589*a(n-43) -1608957*a(n-44) +1790187*a(n-45) +1466332*a(n-46) -8287569*a(n-47) +3181384*a(n-48) -4824429*a(n-49) -1563204*a(n-50) -2147248*a(n-51) -452967*a(n-52) +764876*a(n-53) -189090*a(n-54) +45732*a(n-55) -62688*a(n-56) +960*a(n-57) for n>59
EXAMPLE
Some solutions for n=5
..0..1..1..1. .0..0..0..0. .0..1..1..0. .0..0..0..1. .0..1..0..1
..1..0..1..0. .0..0..0..0. .1..0..1..0. .1..0..1..1. .1..1..0..0
..0..1..1..1. .0..0..0..0. .1..0..0..0. .1..1..1..1. .1..1..1..0
..1..0..1..1. .1..0..1..0. .1..1..1..0. .1..1..1..0. .1..1..1..1
..1..1..0..0. .0..0..0..1. .0..0..0..1. .0..1..1..1. .0..1..1..1
CROSSREFS
Cf. A317604.
Sequence in context: A317007 A293802 A316872 * A288788 A033118 A033126
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 01 2018
STATUS
approved