|
|
A288792
|
|
Number of blocks of size >= ten in all set partitions of n.
|
|
2
|
|
|
1, 12, 145, 1600, 17032, 179132, 1883117, 19929390, 213332101, 2316793121, 25577181324, 287421068697, 3290394397097, 38393883291996, 456753452800691, 5540597439008861, 68530489547341697, 864218608315007230, 11109867095322262250, 145563654356205885737
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
10,2
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 10..576
Wikipedia, Partition of a set
|
|
FORMULA
|
a(n) = Bell(n+1) - Sum_{j=0..9} binomial(n,j) * Bell(n-j).
a(n) = Sum_{j=0..n-10} binomial(n,j) * Bell(j).
|
|
MAPLE
|
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*binomial(n-1, j-1), j=1..n))
end:
g:= proc(n, k) option remember; `if`(n<k, 0,
g(n, k+1) +binomial(n, k)*b(n-k))
end:
a:= n-> g(n, 10):
seq(a(n), n=10..30);
|
|
MATHEMATICA
|
Table[Sum[Binomial[n, j] BellB[j], {j, 0, n - 10}], {n, 10, 30}] (* Indranil Ghosh, Jul 06 2017 *)
|
|
PROG
|
(Python)
from sympy import bell, binomial
def a(n): return sum([binomial(n, j)*bell(j) for j in range(n - 9)])
print([a(n) for n in range(10, 31)]) # Indranil Ghosh, Jul 06 2017
|
|
CROSSREFS
|
Column k=10 of A283424.
Cf. A000110.
Sequence in context: A067219 A075619 A055332 * A041061 A174227 A041266
Adjacent sequences: A288789 A288790 A288791 * A288793 A288794 A288795
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alois P. Heinz, Jun 15 2017
|
|
STATUS
|
approved
|
|
|
|