This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285595 Sum T(n,k) of the k-th entries in all blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows. 8
 1, 4, 2, 17, 10, 3, 76, 52, 18, 4, 362, 274, 111, 28, 5, 1842, 1500, 675, 200, 40, 6, 9991, 8614, 4185, 1380, 325, 54, 7, 57568, 51992, 26832, 9568, 2510, 492, 70, 8, 351125, 329650, 178755, 67820, 19255, 4206, 707, 88, 9, 2259302, 2192434, 1239351, 494828, 149605, 35382, 6629, 976, 108, 10 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS T(n,k) is also k times the number of blocks of size >k in all set partitions of [n+1]. T(3,2) = 10 = 2 * 5 because there are 5 blocks of size >2 in all set partitions of [4], namely in 1234, 123|4, 124|3, 134|2, 1|234. LINKS Alois P. Heinz, Rows n = 1..141, flattened Wikipedia, Partition of a set FORMULA T(n,k) = k * Sum_{j=k+1..n+1} binomial(n+1,j)*A000110(n+1-j). T(n,k) = k * Sum_{j=k+1..n+1} A175757(n+1,j). Sum_{k=1..n} T(n,k)/k = A278677(n+1). EXAMPLE T(3,2) = 10 because the sum of the second entries in all blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 2+2+3+3+0  = 10. Triangle T(n,k) begins: :     1; :     4,     2; :    17,    10,     3; :    76,    52,    18,    4; :   362,   274,   111,   28,    5; :  1842,  1500,   675,  200,   40,   6; :  9991,  8614,  4185, 1380,  325,  54,  7; : 57568, 51992, 26832, 9568, 2510, 492, 70, 8; MAPLE T:= proc(h) option remember; local b; b:=       proc(n, l) option remember; `if`(n=0, [1, 0],         (p-> p+[0, (h-n+1)*p[1]*x^1])(b(n-1, [l[], 1]))+          add((p-> p+[0, (h-n+1)*p[1]*x^(l[j]+1)])(b(n-1,          sort(subsop(j=l[j]+1, l), `>`))), j=1..nops(l)))       end: (p-> seq(coeff(p, x, i), i=1..n))(b(h, [])[2])     end: seq(T(n), n=1..12); # second Maple program: b:= proc(n) option remember; `if`(n=0, [1, 0],       add((p-> p+[0, p[1]*add(x^k, k=1..j-1)])(          b(n-j)*binomial(n-1, j-1)), j=1..n))     end: T:= n-> (p-> seq(coeff(p, x, i)*i, i=1..n))(b(n+1)[2]): seq(T(n), n=1..12); MATHEMATICA b[n_] := b[n] = If[n == 0, {1, 0}, Sum[# + {0, #[[1]]*Sum[x^k, {k, 1, j-1} ]}&[b[n - j]*Binomial[n - 1, j - 1]], {j, 1, n}]]; T[n_] := Table[Coefficient[#, x, i]*i, {i, 1, n}] &[b[n + 1][[2]]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, May 23 2018, translated from 2nd Maple program *) CROSSREFS Column k=1 gives A124325(n+1). Row sums give A000110(n) * A000217(n) = A105488(n+3). Main diagonal and first lower diagonal give: A000027, A028552. Cf. A007318, A175757, A278677, A283424, A285362, A285793, A286897. Sequence in context: A189741 A303142 A328695 * A255566 A302461 A303243 Adjacent sequences:  A285592 A285593 A285594 * A285596 A285597 A285598 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Apr 22 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 01:43 EST 2019. Contains 330013 sequences. (Running on oeis4.)