login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371210
Number of minimum vertex colorings in the complement of the path graph on n nodes.
1
1, 1, 4, 2, 18, 6, 96, 24, 600, 120, 4320, 720, 35280, 5040, 322560, 40320, 3265920, 362880, 36288000, 3628800, 439084800, 39916800, 5748019200, 479001600, 80951270400, 6227020800, 1220496076800, 87178291200, 19615115520000, 1307674368000, 334764638208000
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Minimum Vertex Coloring.
Eric Weisstein's World of Mathematics, Path Complement Graph.
FORMULA
a(n) = (n+1)/2*((n+1)/2)! for n odd.
a(n) = (n/2)! for n even.
E.g.f.: (2*(6*x + x^3) + exp(x^2/4)*sqrt(Pi)*(4 + x*(8 + 8*x + x^3))*erf(x/2))/16. - Stefano Spezia, Mar 15 2024
D-finite with recurrence +2*(-29*n+56)*a(n) +2*(9*n-79)*a(n-1) +(29*n^2+31*n-52)*a(n-2) -(n-1)*(9*n-52)*a(n-3)=0. - R. J. Mathar, Mar 25 2024
MAPLE
A371210 := proc(n)
if type(n, 'odd') then
(n+1)/2*factorial((n+1)/2) ;
else
factorial(n/2) ;
end if;
end proc:
seq(A371210(n), n=1..40) ; # R. J. Mathar, Mar 25 2024
MATHEMATICA
Table[Piecewise[{{(n + 1)/2 ((n + 1)/2)!, Mod[n, 2] == 1}}, (n/2)!], {n, 31}]
CoefficientList[Series[(2 (6 x + x^3) + Exp[x^2/4] Sqrt[Pi] (4 + x (8 + 8 x + x^3)) Erf[x/2])/16, {x, 0, 20}], x] Range[0, 20]!
PROG
(Python)
from math import factorial
def A371210(n): return (m:=n+1>>1)*factorial(m) if n&1 else factorial(n>>1) # Chai Wah Wu, Mar 15 2024
CROSSREFS
Sequence in context: A328695 A285595 A255566 * A302461 A303243 A074676
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Mar 15 2024
STATUS
approved