login
A280609
Odd prime powers with prime exponents.
1
9, 25, 27, 49, 121, 125, 169, 243, 289, 343, 361, 529, 841, 961, 1331, 1369, 1681, 1849, 2187, 2197, 2209, 2809, 3125, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6859, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 16129, 16807, 17161, 18769, 19321, 22201, 22801, 24389, 24649, 26569, 27889, 29791, 29929
OFFSET
1,1
COMMENTS
Intersection of A053810 and A061345.
LINKS
Eric Weisstein's World of Mathematics, Prime Power.
FORMULA
a(n) = p^q, where p, q are primes and p > 2.
Sum_{n>=1} 1/a(n) = Sum_{p prime} P(p) - A051006 = 0.25699271237062131298..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 13 2024
EXAMPLE
9 is in the sequence because 9 = 3^2;
25 is in the sequence because 25 = 5^2;
27 is in the sequence because 27 = 3^3, etc.
MATHEMATICA
Select[Range[30000], PrimePowerQ[#1] && PrimeQ[PrimeOmega[#1]] && Mod[#1, 2] == 1 & ]
PROG
(Python)
from sympy import primepi, integer_nthroot, primerange
def A280609(n):
def f(x): return int(n+x-sum(primepi(integer_nthroot(x, p)[0])-1 for p in primerange(x.bit_length())))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f, n, n) # Chai Wah Wu, Sep 12 2024
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Jan 06 2017
STATUS
approved