|
|
A280608
|
|
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 294", based on the 5-celled von Neumann neighborhood.
|
|
4
|
|
|
1, 3, 4, 14, 17, 57, 65, 225, 257, 897, 1025, 3585, 4097, 14337, 16385, 57345, 65537, 229377, 262145, 917505, 1048577, 3670017, 4194305, 14680065, 16777217, 58720257, 67108865, 234881025, 268435457, 939524097, 1073741825, 3758096385, 4294967297, 15032385537
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Initialized with a single black (ON) cell at stage zero.
|
|
REFERENCES
|
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
|
|
LINKS
|
|
|
FORMULA
|
Empirical g.f.: (1 + 2*x - 3*x^2 + 2*x^3 - x^4 - 4*x^6)/((1 - x)*(1 - 2*x)*(1 + 2*x)). - Ilya Gutkovskiy, Jan 06 2017
a(n) = (8 - 3*(-2)^n + 11*2^n) / 8 for n>3.
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) for n>4.
(End)
|
|
MATHEMATICA
|
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 294; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|