Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #11 Jan 08 2017 12:24:07
%S 1,3,4,14,17,57,65,225,257,897,1025,3585,4097,14337,16385,57345,65537,
%T 229377,262145,917505,1048577,3670017,4194305,14680065,16777217,
%U 58720257,67108865,234881025,268435457,939524097,1073741825,3758096385,4294967297,15032385537
%N Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 294", based on the 5-celled von Neumann neighborhood.
%C Initialized with a single black (ON) cell at stage zero.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H Robert Price, <a href="/A280608/b280608.txt">Table of n, a(n) for n = 0..126</a>
%H Robert Price, <a href="/A280608/a280608.tmp.txt">Diagrams of first 20 stages</a>
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Empirical g.f.: (1 + 2*x - 3*x^2 + 2*x^3 - x^4 - 4*x^6)/((1 - x)*(1 - 2*x)*(1 + 2*x)). - _Ilya Gutkovskiy_, Jan 06 2017
%F Conjectures from _Colin Barker_, Jan 07 2017: (Start)
%F a(n) = (8 - 3*(-2)^n + 11*2^n) / 8 for n>3.
%F a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) for n>4.
%F (End)
%t CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t code = 294; stages = 128;
%t rule = IntegerDigits[code, 2, 10];
%t g = 2 * stages + 1; (* Maximum size of grid *)
%t a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t ca = a;
%t ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t PrependTo[ca, a];
%t (* Trim full grid to reflect growth by one cell at each stage *)
%t k = (Length[ca[[1]]] + 1)/2;
%t ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]
%Y Cf. A280606, A280607, A280610.
%K nonn,easy
%O 0,2
%A _Robert Price_, Jan 06 2017