login
A280605
Expansion of 1/(1 - Sum_{p prime, k>=2} x^(p^k)).
0
1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 3, 2, 0, 0, 6, 5, 1, 0, 10, 10, 3, 0, 18, 23, 9, 2, 31, 46, 22, 6, 56, 94, 56, 19, 101, 184, 129, 50, 185, 364, 293, 134, 344, 708, 638, 332, 651, 1378, 1375, 805, 1265, 2665, 2901, 1878, 2503, 5161, 6057, 4306, 5061, 10005, 12488, 9653, 10384, 19461, 25556, 21319
OFFSET
0,9
COMMENTS
Number of compositions (ordered partitions) of n into proper prime powers (A246547).
FORMULA
G.f.: 1/(1 - Sum_{p prime, k>=2} x^(p^k)).
EXAMPLE
a(12) = 3 because we have [8, 4], [4, 8] and [4, 4, 4].
MATHEMATICA
nmax = 67; CoefficientList[Series[1/(1 - Sum[Sign[PrimeOmega[k] - 1] Floor[1/PrimeNu[k]] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
PROG
(PARI) x='x+O('x^68); Vec(1/(1 - sum(k=2, 67, sign(bigomega(k) - 1) * (1\omega(k)) * x^k))) \\ Indranil Ghosh, Apr 03 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 06 2017
STATUS
approved