login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd prime powers with prime exponents.
1

%I #14 Sep 13 2024 06:54:31

%S 9,25,27,49,121,125,169,243,289,343,361,529,841,961,1331,1369,1681,

%T 1849,2187,2197,2209,2809,3125,3481,3721,4489,4913,5041,5329,6241,

%U 6859,6889,7921,9409,10201,10609,11449,11881,12167,12769,16129,16807,17161,18769,19321,22201,22801,24389,24649,26569,27889,29791,29929

%N Odd prime powers with prime exponents.

%C Intersection of A053810 and A061345.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimePower.html">Prime Power</a>.

%F a(n) = p^q, where p, q are primes and p > 2.

%F Sum_{n>=1} 1/a(n) = Sum_{p prime} P(p) - A051006 = 0.25699271237062131298..., where P(s) is the prime zeta function. - _Amiram Eldar_, Sep 13 2024

%e 9 is in the sequence because 9 = 3^2;

%e 25 is in the sequence because 25 = 5^2;

%e 27 is in the sequence because 27 = 3^3, etc.

%t Select[Range[30000], PrimePowerQ[#1] && PrimeQ[PrimeOmega[#1]] && Mod[#1, 2] == 1 & ]

%o (Python)

%o from sympy import primepi, integer_nthroot, primerange

%o def A280609(n):

%o def f(x): return int(n+x-sum(primepi(integer_nthroot(x, p)[0])-1 for p in primerange(x.bit_length())))

%o def bisection(f,kmin=0,kmax=1):

%o while f(kmax) > kmax: kmax <<= 1

%o while kmax-kmin > 1:

%o kmid = kmax+kmin>>1

%o if f(kmid) <= kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o return kmax

%o return bisection(f,n,n) # _Chai Wah Wu_, Sep 12 2024

%Y Cf. A000961, A034785, A051006, A053810, A061345, A078422, A246547, A246551, A246655.

%K nonn,easy

%O 1,1

%A _Ilya Gutkovskiy_, Jan 06 2017