login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A339127 Odd composite integers m such that A087130(m-J(m,29)) == 2*J(m,29) (mod m), where J(m,29) is the Jacobi symbol. 8
9, 25, 27, 49, 81, 121, 169, 175, 225, 243, 289, 325, 361, 529, 637, 729, 961, 1225, 1331, 1369, 1539, 1681, 1849, 2025, 2209, 2809, 3025, 3481, 3721, 4225, 4489, 5041, 5329, 5929, 6241, 6721, 6889, 6929, 7921, 8281, 9409 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity

V(p-J(p,D)) == 2*J(p,D) (mod p) when p is prime, b=-1 and D=a^2+4.

This sequence has the odd composite integers with V(m-J(m,D)) == 2*J(m,D) (mod m).

For a=5 and b=-1, we have D=29 and V(m) recovers A087130(m).

REFERENCES

D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.

D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted)

LINKS

Table of n, a(n) for n=1..41.

MATHEMATICA

Select[Range[3, 10000, 2], CompositeQ[#] && Divisible[LucasL[# - (j = JacobiSymbol[#, 29]), 5] - 2*j, #] &] (* Amiram Eldar, Nov 26 2020 *)

CROSSREFS

Cf. A087130.

Cf. A339125 (a=1, b=-1), A339126 (a=3, b=-1), A339128 (a=7, b=-1), A339129 (a=3, b=1), A339130 (a=5, b=1), A339131 (a=7, b=1).

Sequence in context: A319165 A319152 A244623 * A117580 A280609 A340238

Adjacent sequences:  A339124 A339125 A339126 * A339128 A339129 A339130

KEYWORD

nonn

AUTHOR

Ovidiu Bagdasar, Nov 24 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 12:26 EDT 2021. Contains 345025 sequences. (Running on oeis4.)