login
A339127
Odd composite integers m such that A087130(m-J(m,29)) == 2*J(m,29) (mod m), where J(m,29) is the Jacobi symbol.
8
9, 25, 27, 49, 81, 121, 169, 175, 225, 243, 289, 325, 361, 529, 637, 729, 961, 1225, 1331, 1369, 1539, 1681, 1849, 2025, 2209, 2809, 3025, 3481, 3721, 4225, 4489, 5041, 5329, 5929, 6241, 6721, 6889, 6929, 7921, 8281, 9409
OFFSET
1,1
COMMENTS
The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity
V(p-J(p,D)) == 2*J(p,D) (mod p) when p is prime, b=-1 and D=a^2+4.
This sequence has the odd composite integers with V(m-J(m,D)) == 2*J(m,D) (mod m).
For a=5 and b=-1, we have D=29 and V(m) recovers A087130(m).
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)
D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted)
MATHEMATICA
Select[Range[3, 10000, 2], CompositeQ[#] && Divisible[LucasL[# - (j = JacobiSymbol[#, 29]), 5] - 2*j, #] &] (* Amiram Eldar, Nov 26 2020 *)
CROSSREFS
Cf. A087130.
Cf. A339125 (a=1, b=-1), A339126 (a=3, b=-1), A339128 (a=7, b=-1), A339129 (a=3, b=1), A339130 (a=5, b=1), A339131 (a=7, b=1).
Sequence in context: A319165 A319152 A244623 * A117580 A280609 A340238
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Nov 24 2020
STATUS
approved