OFFSET
0,3
COMMENTS
More generally, the ordinary generating function for the alternating sum of k-gonal numbers is -x*(1 - (k - 3)*x)/((1 - x)*(1 + x)^3).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
OEIS Wiki, Figurate numbers
Index entries for linear recurrences with constant coefficients, signature (-2,0,2,1).
FORMULA
G.f.: -x*(1 - 9*x)/((1 - x)*(1 + x)^3).
a(n) = 1 + (-1)^n*(5*n^2 + n - 2)/2.
a(n) = Sum_{k = 0..n} (-1)^k*A051624(k).
Lim_{n -> infinity} a(n + 1)/a(n) = -1.
MATHEMATICA
Table[1 + (-1)^n (5 n^2 + n - 2)/2, {n, 0, 43}]
CoefficientList[Series[-x (1 - 9 x)/((1 - x) (1 + x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)
PROG
(Magma) [1+(-1)^n*(5*n^2+n-2)/2: n in [0..50]]; // Vincenzo Librandi, Dec 21 2015
(PARI) x='x+O('x^100); concat(0, Vec(-x*(1-9*x)/((1-x)*(1+x)^3))) \\ Altug Alkan, Dec 21 2015
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Ilya Gutkovskiy, Dec 21 2015
STATUS
approved