login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266088
Alternating sum of 12-gonal (or dodecagonal) numbers.
1
0, -1, 11, -22, 42, -63, 93, -124, 164, -205, 255, -306, 366, -427, 497, -568, 648, -729, 819, -910, 1010, -1111, 1221, -1332, 1452, -1573, 1703, -1834, 1974, -2115, 2265, -2416, 2576, -2737, 2907, -3078, 3258, -3439, 3629, -3820, 4020, -4221, 4431, -4642
OFFSET
0,3
COMMENTS
More generally, the ordinary generating function for the alternating sum of k-gonal numbers is -x*(1 - (k - 3)*x)/((1 - x)*(1 + x)^3).
FORMULA
G.f.: -x*(1 - 9*x)/((1 - x)*(1 + x)^3).
a(n) = 1 + (-1)^n*(5*n^2 + n - 2)/2.
a(n) = Sum_{k = 0..n} (-1)^k*A051624(k).
Lim_{n -> infinity} a(n + 1)/a(n) = -1.
MATHEMATICA
Table[1 + (-1)^n (5 n^2 + n - 2)/2, {n, 0, 43}]
CoefficientList[Series[-x (1 - 9 x)/((1 - x) (1 + x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)
PROG
(Magma) [1+(-1)^n*(5*n^2+n-2)/2: n in [0..50]]; // Vincenzo Librandi, Dec 21 2015
(PARI) x='x+O('x^100); concat(0, Vec(-x*(1-9*x)/((1-x)*(1+x)^3))) \\ Altug Alkan, Dec 21 2015
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Ilya Gutkovskiy, Dec 21 2015
STATUS
approved