The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266091 a(n) = Product_{k=0..n} (3*k)!/(n+k)!. 1
 1, 3, 15, 126, 1782, 42471, 1706562, 115640460, 13216815036, 2548124192970, 828751754742975, 454739496669274500, 420972227408592675000, 657522745057190417409000, 1732789066323343611643088400, 7704900186426840030325195822560, 57807195523790513335568376591463776 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) gives the number of diagonally and antidiagonally symmetric alternating sign matrices (DASASM's) of order (2n+1) X (2n+1) (see Behrend et al. link). LINKS Table of n, a(n) for n=0..16. Roger E. Behrend, Ilse Fischer, Matjaž Konvalinka, Diagonally and antidiagonally symmetric alternating sign matrices of odd order, arXiv:1512.06030 [math.CO], 2015. FORMULA a(n) ~ Gamma(1/3)^(1/3) * exp(1/36) * n^(1/36) * 3^(3*n^2/2 + 2*n + 11/36) / (A^(1/3) * Pi^(1/6) * 2^(2*n^2 + 2*n + 7/12)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Dec 21 2015 a(n) = Product_{1 <= i <= j <= n} (i + 2*j)/(i + j - 1). Note that Product_{1 <= i <= j <= n} (i + j)/(i + j - 1) = 2^n. - Peter Bala, Feb 19 2023 MATHEMATICA Table[Product[(3 k)!/(n + k)!, {k, 0, n}], {n, 0, 16}] (* Vincenzo Librandi, Dec 21 2015 *) PROG (PARI) a(n) = prod(k=0, n, (3*k)!/(n+k)!); (Magma) [&*[Factorial(3*k)/Factorial(n+k): k in [0..n]]: n in [0..16]]; // Vincenzo Librandi, Dec 21 2015 CROSSREFS Cf. A005157, A086205. Sequence in context: A270503 A212553 A229673 * A135255 A182489 A330804 Adjacent sequences: A266088 A266089 A266090 * A266092 A266093 A266094 KEYWORD nonn,easy AUTHOR Michel Marcus, Dec 21 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 18:09 EDT 2024. Contains 374377 sequences. (Running on oeis4.)