login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266090
Decimal representation of the n-th iteration of the "Rule 17" elementary cellular automaton starting with a single ON (black) cell.
3
1, 1, 8, 79, 64, 1663, 512, 29695, 4096, 499711, 32768, 8191999, 262144, 132644863, 2097152, 2134900735, 16777216, 34259075071, 134217728, 548950507519, 1073741824, 8789650571263, 8589934592, 140685948747775, 68719476736, 2251387496824831, 549755813888
OFFSET
0,3
REFERENCES
Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
From Colin Barker, Dec 29 2015 and Apr 15 2019: (Start)
a(n) = 25*a(n-2)-152*a(n-4)+128*a(n-6) for n>5.
G.f.: (1-2*x)*(1+3*x-11*x^2+32*x^3+80*x^4) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)*(1-8*x^2)). (End)
a(n) = 8^(n/2) + (1-(-1)^n)*(2*4^n-8^(n/2)-6*8^((n-1)/2)-1)/2. Therefore: for even n, a(n) = 8^(n/2); otherwise, a(n) = 2*4^n - 6*8^((n-1)/2) - 1. - Bruno Berselli, Dec 29 2015
MATHEMATICA
rule=17; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* Decimal Representation of Rows *)
PROG
(Sage) [8^(n/2)+(1-(-1)^n)*(2*4^n-8^(n/2)-6*8^((n-1)/2)-1)/2 for n in [0..30]] # Bruno Berselli, Dec 29 2015
(Magma) [IsEven(n) select 8^(n div 2) else 2*4^n-6*8^((n-1) div 2)-1: n in [0..30]]; // Bruno Berselli, Dec 29 2015
(Python) print([2*4**n - 6*8**((n-1)//2) - 1 if n%2 else 8**(n//2) for n in range(50)]) # Karl V. Keller, Jr., Aug 31 2021
CROSSREFS
Sequence in context: A316203 A303507 A145508 * A366214 A061425 A160605
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 27 2015
STATUS
approved