login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A203511 a(n) = Product_{1 <= i < j <= n} (t(i) + t(j)); t = A000217 = triangular numbers. 4
1, 1, 4, 252, 576576, 87178291200, 1386980110791475200, 3394352757964564324299571200, 1760578659300452732262852600316664217600, 255323290537547288382098619855584488593426606981120000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Each term divides its successor, as in A203512.
See A093883 for a guide to related sequences.
LINKS
FORMULA
a(n) ~ c * 2^n * exp(n^2*(Pi/4 - 3/2) + n*(Pi/2 + 1)) * n^(n^2 - n - 2 - Pi/8), where c = 0.2807609661547466473998991675307759198889389396430915721129636653... - Vaclav Kotesovec, Sep 07 2023
MAPLE
t:= n-> n*(n+1)/2:
a:= n-> mul(mul(t(i)+t(j), i=1..j-1), j=2..n):
seq(a(n), n=0..12); # Alois P. Heinz, Jul 23 2017
MATHEMATICA
f[j_] := j (j + 1)/2; z = 15;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203511 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203512 *)
Table[Product[k*(k+1)/2 + j*(j+1)/2, {k, 1, n}, {j, 1, k-1}], {n, 0, 10}] (* Vaclav Kotesovec, Sep 07 2023 *)
CROSSREFS
Sequence in context: A180722 A087587 A346919 * A063073 A093760 A062075
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 03 2012
EXTENSIONS
Name edited by Alois P. Heinz, Jul 23 2017
a(0)=1 prepended by Alois P. Heinz, Jul 29 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 18:16 EDT 2024. Contains 371916 sequences. (Running on oeis4.)