login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203512
a(n) = A203511(n+1)/A203511(n).
2
1, 4, 63, 2288, 151200, 15909696, 2447297356, 518678754048, 145022370451200, 51747613910720000, 22956761806169786496, 12397159038346976323584, 8008689946841913447559168, 6099405371286264105062400000, 5408896545253926024119820000000
OFFSET
0,2
LINKS
FORMULA
a(n) ~ 2 * n^(2*n) / exp((2 - Pi/2)*n - 3*Pi/4). - Vaclav Kotesovec, Sep 07 2023
MATHEMATICA
f[j_] := j (j + 1)/2; z = 15;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203511 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203512 *)
Table[Product[(n+2)*(n+1)/2 + j*(j+1)/2, {j, 1, n}], {n, 0, 10}] (* Vaclav Kotesovec, Sep 07 2023 *)
PROG
(Magma) [1] cat [(&*[(n+1)*(n+2) +j*(j+1): j in [1..n]])/2^n: n in [1..30]]; // G. C. Greubel, Feb 23 2024
(SageMath)
def A203512(n): return product((n+1)*(n+2)+j*(j+1) for j in range(1, n+1))//2^n
[A203512(n) for n in range(31)] # G. C. Greubel, Feb 23 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 03 2012
EXTENSIONS
More terms from Alois P. Heinz, Jul 29 2017
STATUS
approved