login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203515
a(n) = A203514(n+1)/A203514(n).
2
13, 1519, 490827, 310285521, 323965491213, 505036803636351, 1099306007175141675, 3185114376029382371169, 11851908573273735083748813, 55083172732097477388836049999, 312715835695576039538837531922507
OFFSET
1,1
COMMENTS
See A093883 for a discussion and guide to related sequences.
LINKS
FORMULA
a(n) = (1/(2^n * n!))*Product_{j=1..n} ((2*n+1)^3 - (2*j-1)^3). - G. C. Greubel, Feb 23 2024
MATHEMATICA
(* First program *)
f[j_]:= 2 j - 1; z = 12;
v[n_]:= Product[f[j]^2 + f[j]*f[k] + f[k]^2, {k, 2, n}, {j, k-1}]
Table[v[n], {n, z}] (* A203514 *)
Table[v[n + 1]/v[n], {n, z}] (* A203515 *)
(* Second program *)
A203515[n_]:= Product[(2*n+1)^3 - (2*j-1)^3, {j, n}]/(2^n*n!);
Table[A203515[n], {n, 30}] (* G. C. Greubel, Feb 23 2024 *)
PROG
(Magma) [(&*[(2*n+1)^3 -(2*j-1)^3: j in [1..n]])/(2^n*Factorial(n)): n in [1..30]]; // G. C. Greubel, Feb 23 2024
(SageMath)
def A203515(n): return product((2*n+1)^3 -(2*j-1)^3 for j in range(1, n+1))/(2^n*factorial(n))
[A203515(n) for n in range(1, 31)] # G. C. Greubel, Feb 23 2024
CROSSREFS
Sequence in context: A185073 A185193 A066457 * A166929 A079917 A028450
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 04 2012
STATUS
approved