OFFSET
1,1
COMMENTS
See A093883 for a discussion and guide to related sequences.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..185
FORMULA
a(n) = (1/(2^n * n!))*Product_{j=1..n} ((2*n+1)^3 - (2*j-1)^3). - G. C. Greubel, Feb 23 2024
MATHEMATICA
(* First program *)
f[j_]:= 2 j - 1; z = 12;
v[n_]:= Product[f[j]^2 + f[j]*f[k] + f[k]^2, {k, 2, n}, {j, k-1}]
Table[v[n], {n, z}] (* A203514 *)
Table[v[n + 1]/v[n], {n, z}] (* A203515 *)
(* Second program *)
A203515[n_]:= Product[(2*n+1)^3 - (2*j-1)^3, {j, n}]/(2^n*n!);
Table[A203515[n], {n, 30}] (* G. C. Greubel, Feb 23 2024 *)
PROG
(Magma) [(&*[(2*n+1)^3 -(2*j-1)^3: j in [1..n]])/(2^n*Factorial(n)): n in [1..30]]; // G. C. Greubel, Feb 23 2024
(SageMath)
def A203515(n): return product((2*n+1)^3 -(2*j-1)^3 for j in range(1, n+1))/(2^n*factorial(n))
[A203515(n) for n in range(1, 31)] # G. C. Greubel, Feb 23 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 04 2012
STATUS
approved