login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203516
a(n) = Product_{1 <= i < j <= n} 2*(i+j-1).
4
1, 4, 192, 184320, 4954521600, 4794391461888000, 204135216112950312960000, 451965950843675288237663846400000, 60040562704967329457107799785403842560000000, 542366306792798635131534558788357929673196306432000000000
OFFSET
1,2
COMMENTS
Each term divides its successor, as in A034910.
See A093883 for a guide to related sequences.
LINKS
FORMULA
a(n) ~ sqrt(A) * 2^(-7/24 - n + 3*n^2/2) * exp(-1/24 + n/2 - 3*n^2/4) * n^(1/24 - n/2 + n^2/2), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Sep 01 2023
From G. C. Greubel, Feb 19 2024: (Start)
a(n) = BarnesG(n+1)*A203517(n).
a(n) = 2^binomial(n,2) * Product_{j=1..n-1} (2j)!/j!. (End)
MAPLE
a:= n-> mul(mul(2*(i+j-1), i=1..j-1), j=2..n):
seq(a(n), n=1..12); # Alois P. Heinz, Jul 23 2017
MATHEMATICA
f[j_] := 2 j - 1; z = 15;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203516 *)
Table[v[n + 1]/(4 v[n]), {n, 1, z - 1}] (* A034910 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203517 *)
Table[2^(-1/24 - 3*n/2 + 3*n^2/2) * Glaisher^(3/2) * Pi^(1/4 - n/2) * BarnesG[1/2 + n]/E^(1/8), {n, 1, 10}] (* Vaclav Kotesovec, Sep 01 2023 *)
PROG
(PARI) a(n) = my(pd=1); for(j=1, n, for(i=1, j-1, pd=pd*2*(i+j-1))); pd \\ Felix Fröhlich, Jul 23 2017
(Magma) [2^Binomial(n, 2)*(&*[Factorial(2*k)/Factorial(k): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Feb 19 2024
(SageMath) [2^binomial(n, 2)*product(factorial(2*k)/factorial(k) for k in range(n)) for n in range(1, 21)] # G. C. Greubel, Feb 19 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 03 2012
EXTENSIONS
Name edited by Alois P. Heinz, Jul 23 2017
STATUS
approved