login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159783
Hankel transform of ordered Bell numbers A000670. a(n)=det(A000670(i+j-1)), i,j=1,2..n.
1
1, 4, 192, 221184, 10192158720, 28179280429056000, 6544446260541338419200000, 170229151878929266676890337280000000, 637613431509979741286846928045094207488000000000
OFFSET
1,2
LINKS
FORMULA
a(n) = 2^((n-1)*n/2)*G(n+1)*G(n+2)=2^((n-1)*n/2)*A000178(n-1)*A000178(n), where G(n)=product(Gamma(k), k=1..n). - Todd Silvestri, Nov 15 2014
a(n) ~ 2^((n^2 + n + 1)/2) * n^(n^2 + n + 1/3) * Pi^(n + 1/2) / (A^2 * exp(3*n^2/2 + n - 1/6)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015
MATHEMATICA
a[n_Integer/; n>=1]:=2^((n-1) n/2) BarnesG[n+1] BarnesG[n+2] (* Todd Silvestri, Nov 15 2014 *)
a[n_] := Table[HurwitzLerchPhi[1/2, 1-i-j, 0]/2, {i, n}, {j, n}] // Det;
Array[a, 10] (* Jean-François Alcover, Mar 30 2016 *)
CROSSREFS
Sequence in context: A299999 A007341 A203516 * A028370 A042127 A219163
KEYWORD
nonn
AUTHOR
Karol A. Penson, Apr 22 2009
STATUS
approved